Investing your time and money is serious business, so you need to know if a degree program is going to be worth it. In this review, we’re going to take a look at what you can get out of the course and what you need to put into it so that you can decide whether it’s the stepping stone your career needs.
Platform: Udacity.com
Duration: 4 months working around 10 hrs a week
Price: Monthly access from $399
Certificate: You will receive a certificate upon successful completion of the course
Level: Advanced
Machine learning is a field that is constantly expanding, as are the expectations for anyone who wants to succeed in the industry. It’s no longer enough to just understand how to train machine learning systems; you now need to be able to package, deploy, and monitor them in production environments too.
This Nanodegree is focussed on the fundamentals. It is carefully designed to give you all the skills you need to effectively build and manage an ML model.
You will learn how to implement Python code that is ready for production, monitor summaries and performance over time to prevent degradation, engineer automated workflows for data (with model validation and continuous training), and construct complex pipelines that include automated retraining and deployments.
The first course in the program focuses on how to actually deploy production ML models. You will learn how to work more efficiently and follow PEP8 standards, improve your Github skills by working in teams, and understand how to be sure that your code is production ready.
In this course, you will become more productive, efficient, and effective in your machine learning projects. It teaches you the foundations of successful, reproducible ML pipelines, best practices for exploring and preparing data, how to track training, validation, and experiments, and how to ultimately deploy your code.
This part of the program enables you to actually deploy an ML model to production. It includes performance testing and preparing for production, data and model versioning, CI/CD, and API deployment with FastAPI.
Once you have all the skills to deploy an efficient pipeline, you will then learn how to automate the process for scoring and re-deploying your ML models. You’ll set up scoring processes, understand model scoring and model drift, learn how to diagnose and fix operational issues, and report and monitor models with APIs.
Josh has been imparting data science wisdom at university levels and in coding boot camps for almost ten years. He has also implemented his own knowledge in a wide variety of areas from the automation of processes to cancer research.
Giacomo is the Lead Data Scientist for Cape Analytics, using AI systems in order to gather understanding from geospatial imagery and solve complex problems in the worlds of real estate and insurance.
Justin works with Optum as a Data Scientist, improving the efficiency of healthcare services with machine learning and NLP. He also has experience working for the census bureau of the United States as a Data Scientist.
Bradford has worked in Data Science for many years and has written extensively in the field.
Ulrika has worked for Ericsson for more than two decades, 11 years of which have been in AI and Data. She has written and published seven books about Data Science and has an MSc.
Depending on how much time you commit to the course on a weekly basis, this program can be very quick to complete.
Most students manage to finish the Machine Learning DevOps Engineer Nanodegree in just 4 months, dedicating between 5 and 10 hours/week on average.
This course is open and available to anyone who is interested, and you do not need to have any level of qualification or experience to be accepted. With that being said, it is relatively advanced and would be challenging if you did not have at least some prior understanding before getting started.
The main prerequisite knowledge that you will need to be successful is a reasonable level of Python and machine learning experience. In order to be particularly well prepared for the course, you should be relatively familiar with:
If you don’t feel quite ready for a course of this level, you could instead start out with Udacity’s courses on AI Programming with Python and/or Introduction to Machine Learning.
Machine Learning DevOps is a field that has become integral to a wide number of different jobs in data. This course could help you to stand out from the crowd or advance in your current position.
The roles most directly associated with Machine Learning DevOps skills include Data Engineer, Data Scientist, Machine Learning Engineer, DevOps Engineer, Machine Learning Ops, Cloud Engineer, and much more besides.
Is the Udacity Machine Learning DevOps Engineer Nanodegree worth it? Absolutely. Like so many of the other courses that Udacity provides, you get a huge amount of value for your money and time with this course, which is why it has received nearly a full 5 stars from over 100 reviews.
Developing your ability to build and monitor machine learning models in a truly impactful way can make a huge difference to your career and open you up to significant opportunities.
We all know that the world of data and AI is constantly evolving, and this Nanodegree is a great way to make sure that you are staying ahead of the game rather than being left behind. Machine Learning DevOps as a skillset is establishing a key role in an increasing number of industries, having an impact on everything from more efficient public transport systems to improved earthquake preparedness.
These courses provide access to more than just theoretical knowledge and understanding. You will be given the opportunity to work on real-world projects and engage with immersive content that has been developed alongside some of the biggest names in the industry, providing you with the skills that high-level companies are looking for.
Many online courses can make you feel like you’re struggling by yourself but, with Udacity, you will always have an expert to talk to. Their mentors are highly knowledgeable and incredibly helpful, answering any questions you have and guiding you toward success.
You get a lot more than just the course content itself, too. You will also be able to access both Github portfolio review and LinkedIn profile optimization so that you can be sure you’re putting your best foot forward in your career.
Unlike traditional degree programs, you can adjust this course to fit around the rest of your life. Learn as fast or as slow as you need and put the time in when it suits you.
So, what do we think of the Udacity Machine Learning DevOps Engineer Nanodegree? We think this course is an excellent way to get ahead in data and machine learning, which is a field that has been absolutely exploding over the last few years.
If you want to stand out to big tech companies and give yourself the skills to confidently pack, deploy, and monitor ML models in a production environment, then this course is a great way to do it.
It’s good value for money, it’s filled with high-level, actionable content, and you can complete the entire program in just 4 months.